login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308290
Expansion of Sum_{k>=1} mu(k)*log(1 + x^k/(1 - x^k)^3)/k.
1
1, 2, 3, 1, -1, -6, -3, 2, 9, 9, -6, -24, -25, 16, 72, 75, -35, -213, -239, 78, 627, 767, -182, -1890, -2477, 355, 5847, 8109, -360, -18195, -26801, -1225, 56724, 89040, 11431, -177897, -297030, -61857, 560310, 994427, 284075, -1766754, -3338212, -1201932
OFFSET
1,2
COMMENTS
Inverse Euler transform of triangular numbers (A000217).
FORMULA
-1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A000217.
MATHEMATICA
nmax = 44; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + x^k/(1 - x^k)^3]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
nmax = 50; s = ConstantArray[0, nmax]; Do[s[[j]] = j^2*(j + 1)/2 - Sum[s[[d]]*(j - d)*(j - d + 1)/2, {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* Vaclav Kotesovec, Aug 10 2019 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 18 2019
STATUS
approved