login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the multiplicative inverse of A001844(n) modulo A001844(n+1); where A001844 is the sequence of centered square numbers.
4

%I #78 Dec 06 2024 16:30:03

%S 1,8,2,23,3,46,4,77,5,116,6,163,7,218,8,281,9,352,10,431,11,518,12,

%T 613,13,716,14,827,15,946,16,1073,17,1208,18,1351,19,1502,20,1661,21,

%U 1828,22,2003,23,2186,24,2377,25,2576,26,2783,27,2998,28,3221,29,3452

%N a(n) is the multiplicative inverse of A001844(n) modulo A001844(n+1); where A001844 is the sequence of centered square numbers.

%C The sequence explores the relationship between the terms of A001844, the sums of consecutive squares. The sequence is an interleaving of A033951 (a number spiral arm) and the natural numbers. The gap between the lower values of A308215 and the upper values of A308217 increase by 3n; each successive gap increasing by 6.

%H Robert Israel, <a href="/A308217/b308217.txt">Table of n, a(n) for n = 0..10000</a>

%H Daniel Hoyt, <a href="/A308217/a308217_3.png">Graph of A308215 and A308217 in relation to A001844</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-3,0,1).

%F a(n) satisfies a(n)*(2*n*(n-1)+1) == 1 (mod 2*n*(n+1)+1).

%F Conjectures from _Colin Barker_, May 16 2019: (Start)

%F G.f.: (1 + 8*x - x^2 - x^3 + x^5) / ((1 - x)^3*(1 + x)^3).

%F a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>5.

%F a(n) = (9 - 5*(-1)^n + (8-6*(-1)^n)*n - 2*(-1+(-1)^n)*n^2) / 4. (End)

%F From _Robert Israel_, Aug 11 2019: (Start)

%F a(n) = 1 + n/2 if n is even, since 0 < 1+n/2 < A001844(n+1) and (1+n/2)*A001844(n)-1 = (n/2)*A001844(n+1).

%F a(n) = n^2 + 7/2*(n+1) if n is odd, since 0 < n^2+7/2*(n+1) < A001844(n+1) and (n^2+7/2*(n+1))*A001844(n)-1 = (n^2+3*k/2+1/2)*A001844(n+1).

%F Colin Barker's conjectures easily follow. (End)

%F E.g.f.: ((2 + 9*x)*cosh(x) + (7 + x + 2*x^2)*sinh(x))/2. - _Stefano Spezia_, Dec 06 2024

%p A001844:= n -> 2*n*(n+1)+1:

%p seq(1/A001844(n) mod A001844(n+1),n=0..100); # _Robert Israel_, Aug 11 2019

%t LinearRecurrence[{0, 3, 0, -3, 0, 1}, {1, 8, 2, 23, 3, 46}, 30] (* _Georg Fischer_, Dec 06 2024 *)

%o (PARI) f(n) = 2*n*(n+1)+1; \\ A001844

%o a(n) = lift(1/Mod(f(n), f(n+1))); \\ _Michel Marcus_, May 16 2019

%Y Cf. A001844, A054552, A033951, A308215.

%K nonn,easy,changed

%O 0,2

%A _Daniel Hoyt_, May 15 2019