login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308208
Least number k such that the determinant of the symmetric Hankel matrix formed by its decimal digits is equal to n negated.
1
0, 1101, 110, 12, 112, 23, 102, 34, 13, 45, 334, 56, 24, 67, 554, 14, 35, 89, 130, 667, 46, 25, 342, 887, 15, 889, 314, 36, 68, 241, 11022, 1164, 26, 47, 546, 16, 124, 425, 46730, 58, 37, 657, 13132, 415, 214, 27, 12850, 251, 17, 1707, 146, 235, 553, 2073, 114, 38, 59, 897, 526, 647
OFFSET
0,2
COMMENTS
Records: 0, 1101, 11022, 46730, 52324, 54160, 1125004, 1162232, 1205240, 1252514, 1341680, 1663828, 3357554, 3741424, 4561735, 5069138, 9436293, 104562436, 122775666, 160205152, 165525440, 224394816, etc.
LINKS
Wikipedia, Hankel matrix
EXAMPLE
| 1 1 0 |
a(2) = 110 because det | 1 0 1 | = -2
| 0 1 1 |
;
a(5) = 23 because det | 2 3 |
| 3 2 | = -5; etc.
MAPLE
with(numtheory): with(linalg): P:=proc(q) local c, d, i, k, n, t: print(0);
for i from 1 to q do for n from 1 to q do c:=convert(n, base, 10): t:=[]:
for k from 1 to nops(c) do t:=[op(t), 0]: od: d:=t: t:=[]:
for k from 1 to nops(c) do t:=[op(t), d]: t[k, -k]:=1: od:
if det(evalm(toeplitz(c) &* t))=-i then print(n); break: fi:
od: od: end: P(10^8);
MATHEMATICA
f[n_] := Block[{k = 0}, While[id = IntegerDigits@ k; -Det[HankelMatrix[id, Reverse@ id]] != n, k++]; k]; Array[f, 60, 0]
CROSSREFS
Cf. A308110.
Sequence in context: A277864 A278592 A278443 * A290684 A290852 A283133
KEYWORD
nonn,base
AUTHOR
STATUS
approved