login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308096
Take all the integer-sided triangles with perimeter n and sides a, b, and c such that a <= b <= c. a(n) is the sum of all the b's.
1
0, 0, 1, 0, 2, 2, 5, 3, 10, 7, 16, 13, 24, 20, 38, 29, 50, 45, 69, 58, 92, 79, 117, 104, 146, 131, 186, 162, 222, 205, 270, 243, 324, 294, 381, 351, 444, 411, 523, 477, 596, 560, 686, 636, 784, 730, 886, 832, 996, 938, 1127, 1052, 1250, 1188, 1395, 1315
OFFSET
1,5
FORMULA
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} sign(floor((i+k)/(n-i-k+1))) * i.
Conjectures from Colin Barker, May 17 2019: (Start)
G.f.: x^3*(1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + 2*x^6) / ((1 - x)^4*(1 + x)^3*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = -a(n-1) + 2*a(n-3) + 4*a(n-4) + 2*a(n-5) - a(n-6) - 5*a(n-7) - 5*a(n-8) - a(n-9) + 2*a(n-10) + 4*a(n-11) + 2*a(n-12) - a(n-14) - a(n-15) for n>15.
(End)
MATHEMATICA
Table[Sum[Sum[i*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
CROSSREFS
Cf. A307686 (sum of smallest sides), A307966 (sum of largest sides).
Sequence in context: A331520 A160793 A327754 * A006800 A241820 A190170
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 12 2019
STATUS
approved