login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the sum of sigma (i.e., A000203) over the totatives of n.
1

%I #18 May 13 2019 10:18:59

%S 1,1,4,5,15,7,33,19,40,26,87,27,127,50,84,82,220,59,277,90,187,140,

%T 407,103,401,193,352,207,660,127,762,309,485,339,646,244,1098,423,677,

%U 390,1342,268,1480,525,758,639,1758,416,1666,581,1191,770,2250,527,1742,821,1527,1016,2786,502,3014

%N a(n) is the sum of sigma (i.e., A000203) over the totatives of n.

%C a(n) <= A024916(n-1) for n >= 2, with equality if and only if n is prime.

%H Robert Israel, <a href="/A308095/b308095.txt">Table of n, a(n) for n = 1..10000</a>

%H Robert Israel, <a href="/A308095/a308095.png">Plot of a(n)/n^2 for 1 <= n <= 20000</a>

%F a(n) = Sum_{1<=k<=n; gcd(k,n)=1} A000203(k).

%e a(3) = sigma(1) + sigma(2) = 4.

%p f:= proc(n) local k; add(numtheory:-sigma(k), k=select(t -> igcd(t,n)=1, [$1..n])) end proc;

%p map(f, [$1..100]);

%o (PARI) a(n) = sum(k=1, n, if (gcd(n,k)==1, sigma(k))); \\ _Michel Marcus_, May 13 2019

%Y Cf. A000203, A024916, A307997.

%K nonn,look

%O 1,3

%A _J. M. Bergot_ and _Robert Israel_, May 12 2019