login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307993
G.f. A(x) satisfies: A(x) = x + x^2 + x^3 * (1 + A(x) + A(x^2) + A(x^3) + ...).
4
1, 1, 1, 1, 2, 2, 3, 3, 5, 4, 6, 7, 8, 7, 13, 9, 12, 17, 15, 13, 27, 16, 22, 32, 24, 23, 48, 27, 33, 55, 40, 34, 79, 41, 49, 87, 55, 55, 122, 56, 72, 132, 81, 73, 174, 82, 98, 196, 106, 99, 253, 110, 131, 267, 144, 132, 342, 153, 175, 359, 188, 176, 459, 189, 218, 496, 238, 229, 602
OFFSET
1,5
COMMENTS
Shifts left 3 places under inverse Moebius transform.
FORMULA
G.f.: x + x^2 + x^3 * (1 + Sum_{n>=1} a(n)*x^n/(1 - x^n)).
a(1) = a(2) = a(3) = 1; a(n+3) = Sum_{d|n} a(d).
MATHEMATICA
terms = 69; A[_] = 0; Do[A[x_] = x + x^2 + x^3 (1 + Sum[A[x^k], {k, 1, terms}]) + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
a[n_] := a[n] = SeriesCoefficient[x + x^2 + x^3 (1 + Sum[a[k] x^k/(1 - x^k), {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 69}]
a[n_] := a[n] = Sum[a[d], {d, Divisors[n - 3]}]; a[1] = a[2] = a[3] = 1; Table[a[n], {n, 1, 69}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 09 2019
STATUS
approved