login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A307742
Quasi-logarithm A064097(n) of von Mangoldt's exponential function A014963(n).
4
0, 1, 2, 1, 3, 0, 4, 1, 2, 0, 5, 0, 5, 0, 0, 1, 5, 0, 6, 0, 0, 0, 7, 0, 3, 0, 2, 0, 7, 0, 7, 1, 0, 0, 0, 0, 7, 0, 0, 0, 7, 0, 8, 0, 0, 0, 9, 0, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0, 9, 0, 8, 0, 0, 1, 0, 0, 9, 0, 0, 0, 9, 0, 8, 0, 0, 0, 0, 0, 9, 0, 2, 0, 9, 0, 0, 0, 0, 0, 9
OFFSET
1,3
FORMULA
a(n) = A064097(A014963(n)).
a(n) = 1 + A064097(n-1) if n is prime.
a(n) = a(p) if n=p^k with k > 1.
a(n) = 0 if n is not a prime power or n = 1.
a(n) = -Sum_{d|n} A064097(d)*A008683(d) by Mobius inversion.
MATHEMATICA
qLog[n_] := qLog[n] = Module[{p, e}, If[n == 1, 0, Sum[{p, e} = pe; (1 + qLog[p-1])e, {pe, FactorInteger[n]}]]];
a[n_] := qLog[Exp[MangoldtLambda[n]]];
Array[a, 100] (* Jean-François Alcover, May 07 2019 *)
PROG
(PARI) mang(n) = ispower(n, , &n); if(isprime(n), n, 1); \\ A014963
ql(n) = if (n==1, 0, if(isprime(n), 1+ql(n-1), sumdiv(n, p, if(isprime(p), ql(p)*valuation(n, p))))); \\ A064097
a(n) = ql(mang(n)); \\ Michel Marcus, Apr 26 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
I. V. Serov, Apr 26 2019
STATUS
approved