login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307721
a(n) = x(y(n)) - y(x(n)) where x = A302128 and y = A005350.
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1
COMMENTS
A chaotic sequence based on a definition by A. Fraenkel. Fibonacci numbers determine the boundaries of the generations.
LINKS
A. S. Fraenkel, Iterated floor function, algebraic numbers, discrete chaos, Beatty subsequences, semigroups, Trans. Amer. Math. Soc., Volume 341, Number 2 (1994).
Rémy Sigrist, C program for A307721
MAPLE
x:= proc(n) option remember;
procname(procname(n-2)) + procname(n-procname(n-1))
end proc:
x(1):= 1: x(2):= 1: x(3):= 1:
y:= proc(n) option remember;
procname(procname(n-1)) + procname(n-procname(n-1))
end proc:
y(1):= 1: y(2):= 1: y(3):= 1:
map(x@y-y@x, [$1..100]); # Robert Israel, Apr 25 2019
MATHEMATICA
x[1]=x[2]=x[3]=y[1]=y[2]=y[3]=1; x[n_] := x[n] = x[x[n-2]] + x[n - x[n - 1]]; y[n_] := y[n] = y[y[n-1]] + y[n - y[n-1]]; a[n_] := x[y[n]] - y[x[n]]; Array[a, 100] (* Giovanni Resta, Apr 24 2019 *)
PROG
(PARI) x=vector(200); for(n=1, 3, x[n] = 1); for(n=4, #x, x[n] = x[x[n-2]] + x[n-x[n-1]]); y=vector(200); for(n=1, 3, y[n] = 1); for(n=4, #y, y[n] = y[y[n-1]] + y[n-y[n-1]]); vector(200, n, x[y[n]]-y[x[n]])
(C) See Links section.
CROSSREFS
Sequence in context: A000004 A297046 A248805 * A378651 A023976 A025469
KEYWORD
sign
AUTHOR
Altug Alkan, Apr 24 2019
STATUS
approved