login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307525 Expansion of e.g.f. Product_{k>=1} 1/(1 - log(1/(1 - x))^k/k!). 0

%I

%S 1,1,4,21,146,1240,12479,144970,1908682,28079550,456458832,8125189974,

%T 157190542607,3284222304545,73705849847317,1768479436456975,

%U 45180024672023814,1224529894981726614,35096983241255523572,1060703070504583747430,33714045363258013414692

%N Expansion of e.g.f. Product_{k>=1} 1/(1 - log(1/(1 - x))^k/k!).

%F E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} log(1/(1 - x))^(j*k)/(k*(j!)^k)).

%F a(n) = Sum_{k=0..n} |Stirling1(n,k)|*A005651(k).

%F a(n) ~ c * sqrt(2*Pi) * n^(n + 1/2) / (exp(1) - 1)^(n+1), where c = A247551 = Product_{k>=2} 1/(1-1/k!). - _Vaclav Kotesovec_, Apr 13 2019

%t nmax = 20; CoefficientList[Series[Product[1/(1 - Log[1/(1 - x)]^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

%t nmax = 20; CoefficientList[Series[Exp[Sum[Sum[Log[1/(1 - x)]^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

%t Table[Sum[Abs[StirlingS1[n, k]] Total[Apply[Multinomial, IntegerPartitions[k], {1}]], {k, 0, n}], {n, 0, 20}]

%Y Cf. A005651, A140585, A306039, A320349.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Apr 12 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 12:18 EST 2020. Contains 330958 sequences. (Running on oeis4.)