login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307452
Primes p such that the sum of the decimal digits of p^4 is also a prime.
0
2, 5, 7, 17, 23, 41, 47, 53, 67, 73, 97, 103, 113, 151, 157, 163, 173, 179, 197, 199, 223, 227, 251, 257, 263, 281, 293, 313, 349, 353, 389, 431, 439, 449, 457, 461, 479, 499, 503, 557, 577, 587, 593, 619, 659, 673, 709, 733, 829, 853, 857, 983, 997, 1033
OFFSET
1,1
EXAMPLE
2^4=16, 1+6=7. 5^4=625, 6+2+5=13. 7^4=2401, 2+4+0+1=7.
MATHEMATICA
Select[Prime@ Range@ 180, PrimeQ@ Total@ IntegerDigits[#^4] &] (* Michael De Vlieger, Jul 08 2019 *)
PROG
(PARI) isok(p) = isprime(p) && isprime(sumdigits(p^4)); \\ Michel Marcus, Apr 09 2019
CROSSREFS
Cf. A007953 (sumdigits), A030514 (primes^4).
Sequence in context: A019084 A278487 A176676 * A066028 A066039 A142341
KEYWORD
nonn,base,easy
AUTHOR
Salvatore Di Guida, Apr 09 2019
STATUS
approved