OFFSET
1,3
COMMENTS
The length of row n is A001401(n), n >= 1.
The Girard-Waring formula for the power sum p(5,n) = Sum_{j=1..5} (x_j)^n in terms of the elementary symmetric functions e_j(x_1, x_2, x_3, x_4), for j = 1, 2 ,..., 5 is given in the W. Lang reference, Theorem 1, in an explicitly nested four sums version. See also the summary link, for N = 5 (there sigma_j^{(N)} -> e_j here).
In this array the partitions of n, with all partitions with a part >= 6 omitted, are used. Here the partitions appear in the reverse Abramowitz-Stegun order. See row n of the array of Waring numbers A115131, read backwards, with the entries corresponding to these omitted partitions.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]
Wolfdieter Lang, On sums of powers of zeros of polynomials, J. Comp. Appl. Math. 89 (1998) 237-256; Theorem 1.
Wolfdieter Lang, Nested sum version of the Girard-Waring formula (a summary)
FORMULA
T(n, k) is the k-th coefficient of the Waring number partition array A115131(n, m) (k there is replaced here by m), read backwards, omitting all partitions which have a part >= 6.
EXAMPLE
The irregular triangle T(n, k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
-----------------------------------------------------------------------------
1: 1
2: 1 -2
3: 1 -3 3
4: 1 -4 2 4 -4
5: 1 -5 5 5 -5 -5 5
6: 1 -6 9 6 -2 -12 -6 3 6 6
7: 1 -7 14 7 -7 -21 -7 7 7 14 7 -7 -7
8: 1 -8 20 8 -16 -32 -8 2 24 12 24 8 -8 -8 -16 -16 4 8
9: 1 -9 27 9 -30 -45 -9 9 54 18 36 9 -9 -27 -27 -27 -27 3 18 9 9 18 -9
.
.
.
n = 10: 1 -10 35 10 -50 -60 -10 25 100 25 50 10 -2 -40 -60 -60 -40 -40 15 10 10 60 30 15 30 -10 -10 -20 -20 5.
...
------------------------------------------------------------------------------
Row n = 6: x_1^6 + x_2^6 + x_3^6 + x_4^6 + x_5^6 = 1*e_1^6 - 6*e_1^4*e_2 + 9*e_1^2*e_2^2 + 6*e_1^3*e_3 - 2*e_2^3 - 12*e_1*e_2*e_3 - 6*e_1^2*e_4 + 3*e_3^2 + 6*e_2*e_4 + 6*e_1*e_5, with e_1 = Sum_{j=1..5} x_j, e_2 = x1*(x_2 + x_3 + x_4 + x_5) + x_2*(x_3 + x_4 + x_5) + x_3*(x_4 + x_5) + x_4*x_5, e_3 = x_1*x_2*x_3 + x_1*x_2*x_4 + x_1*x_2*x_5 + x_2*x_3*x_4 + x_2*x_3*x_5 + x_2*x_4*x_5 + x_3*x_4*x_5, e_4 = x_1*x_2*x_3*x_4 + x_1*x_2*x_3*x_5 + x_1*x_2*x_4*x_5 + x_1*x_3*x_4*x_5 + x_2*x_3*x_4*x_5, e_5 = Product_{i=1..5} x_j.
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Wolfdieter Lang, May 14 2019
STATUS
approved