login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307343
Number of partitions of n into 3 mutually distinct, mutually nonadjacent prime parts.
2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 3, 1, 2, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 2, 5, 2, 3, 5, 7, 3, 7, 2, 5, 5, 9, 2, 8, 3, 9, 5, 10, 1, 8, 4, 10, 6, 11, 1, 11, 4, 11, 6, 12, 3, 16, 4, 12, 6, 14, 4, 18
OFFSET
1,26
FORMULA
a(n) = Sum_{k=1..floor((n-1)/3)} Sum_{i=k+1..floor((n-k-1)/2)} A010051(i) * A010051(k) * A010051(n-i-k) * (1-floor((pi(k)+1)/pi(i))) * (1-floor((pi(i)+1)/pi(n-i-k))), where pi is the prime counting function.
EXAMPLE
a(18) = 1; 18 = 2 + 5 + 11, which is the only partition of 18 into 3 mutually nonadjacent prime parts.
MAPLE
with(numtheory): A307343:=n->add(add((pi(k)-pi(k-1))*(pi(i)-pi(i-1))*(pi(n-i-k)-pi(n-i-k-1))*(1-floor((pi(k)+1)/pi(i)))*(1-floor((pi(i)+1)/pi(n-i-k))), i=k+1..floor((n-k-1)/2)), k=1..floor((n-1)/3)): seq(A307343(n), n=1..150);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0$3], `if`(i<1, [0$4],
zip((x, y)-> x+y, b(n, i-1), [0, `if`(ithprime(i)>n, [0$3],
b(n-ithprime(i), i-2)[1..3])[]], 0)))
end:
a:= n-> b(n, numtheory[pi](n))[4]:
seq(a(n), n=1..200); # Alois P. Heinz, Apr 05 2019
MATHEMATICA
Table[Sum[Sum[(1 - Floor[(PrimePi[k] + 1)/PrimePi[i]]) (1 - Floor[(PrimePi[i] + 1)/PrimePi[n - i - k]]) (PrimePi[i] - PrimePi[i - 1])*(PrimePi[k] - PrimePi[k - 1]) (PrimePi[n - i - k] - PrimePi[n - i - k - 1]), {i, k + 1, Floor[(n - k - 1)/2]}], {k, Floor[(n - 1)/3]}], {n, 100}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 02 2019
STATUS
approved