login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307219 a(n) is the number of partitions of (prime(n)^2 + 2)/3 into 3 squares. 0
1, 1, 2, 2, 1, 2, 2, 5, 6, 2, 6, 3, 6, 5, 14, 8, 6, 5, 6, 15, 10, 6, 14, 24, 14, 6, 12, 12, 6, 16, 19, 18, 18, 36, 18, 10, 16, 20, 20, 12, 28, 18, 8, 24, 38, 27, 40, 20, 17, 30, 52, 18, 22, 26, 29, 21, 42, 31, 26, 26, 18, 44, 38, 40, 46, 26, 30, 44, 38, 36, 52, 28, 27, 38, 103, 22, 38, 78 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,3

COMMENTS

If p >= 5 is a prime number it can be written as p = 6m-1 or p = 6m+1. The identities ((6m-1)^2 + 2)/3 = (2m)^2 + (2m)^2 + (2m-1)^2 and ((6m+1)^2 + 2)/3 = (2m)^2 + (2m)^2 + (2m+1)^2 show that the number (p^2 + 2)/3 can be written as a sum of 3 squares of integers in at least one way.

REFERENCES

Ion Cucurezeanu, Pătrate și cuburi perfecte de numere întregi (Squares and perfect cubes of integer numbers), Ed. Gil., Zalău, 2007, ch. 1, p. 21, pr. 166.

Laurențiu Panaitopol, Dinu Șerbănescu, Number theory and combinatorial problems for juniors, Ed. Gil, Zalău, (2003), ch. 1, p. 5, pr. 4. (in Romanian).

LINKS

Table of n, a(n) for n=3..80.

EXAMPLE

For n = 3, p = prime(3) = 5, (5^2+2)/3 = 9 = 2^2 + 2^2 + 1^2, so a(3) = 1.

For n = 9, p = prime(9) = 23, (23^2+2)/3 = 177 = 13^2 + 2^2 + 2^2 = 8^2 + 8^2 + 7^2, so a(9) = 2.

For n = 17, p = prime(17) = 59, (59^2+2)/3 = 1161 = 34^2 + 2^2 + 1^2 = 33^2 + 6^2 + 6^2 = 24^2 + 11^2 + 4^2 = 31^2 + 14^2 + 2^2 = 31^2 + 10^2 + 10^2 = 30^2 + 15^2 + 6^2 = 29^2 + 16^2 + 8^2 = 28^2 + 19^2 + 4^2 = 28^2 + 16^2 + 11^2 = 26^2 + 22^2 + 1^2 = 26^2 + 17^2 + 14^2 = 24^2 + 24^2 + 3^2 = 24^2 + 21^2 + 12^2 = 20^2 + 20^2 + 19^2, so a(17) = 14.

PROG

(MAGMA) [#RestrictedPartitions(Floor((p*p+2)/3), 3, {d*d:d in [1..p]}): p in PrimesInInterval(5, 500) ];

(PARI) a(n)={k=(prime(n+2)^2+2)/3; sum(a=1, k, sum(b=1, a, sum(c=1, b, a^2+b^2+c^2==k))); } \\ Jinyuan Wang, Mar 30 2019

CROSSREFS

Cf. A000040, A000378, A024795, A025427.

Sequence in context: A075445 A216612 A194447 * A236573 A333252 A293375

Adjacent sequences:  A307216 A307217 A307218 * A307220 A307221 A307222

KEYWORD

nonn

AUTHOR

Marius A. Burtea, Mar 29 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 12:56 EDT 2021. Contains 345380 sequences. (Running on oeis4.)