|
|
A216612
|
|
T(n,k)=Number of horizontal, diagonal and antidiagonal neighbor colorings of the odd squares of an nXk array with new integer colors introduced in row major order
|
|
10
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 5, 2, 2, 5, 15, 20, 15, 5, 2, 15, 41, 203, 67, 52, 5, 5, 52, 716, 3429, 4140, 1335, 203, 15, 5, 203, 2847, 83440, 83437, 115975, 6097, 877, 15, 15, 877, 83440, 2711768, 18171918, 20880505, 4213597, 192713, 4140, 52, 15, 4140
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,9
|
|
COMMENTS
|
Table starts
...1......1.........1............1..............1................2
...1......1.........1............2..............5...............15
...1......2.........2...........15.............41..............716
...2......5........20..........203...........3429............83440
...2.....15........67.........4140..........83437.........18171918
...5.....52......1335.......115975.......20880505.......6423127757
...5....203......6097......4213597......942420901....3376465219485
..15....877....192713....190899322...484968748793.2486327138729353
..15...4140...1094076..10480142147.33862631596393
..52..21147..49055292.682076806159
..52.115975.329588907
.203.678570
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..96
|
|
EXAMPLE
|
Some solutions for n=4 k=4
..x..0..x..1....x..0..x..1....x..0..x..1....x..0..x..1....x..0..x..1
..2..x..3..x....2..x..3..x....1..x..2..x....2..x..3..x....1..x..2..x
..x..4..x..2....x..1..x..2....x..0..x..3....x..4..x..0....x..3..x..4
..5..x..6..x....4..x..3..x....2..x..1..x....2..x..5..x....0..x..2..x
|
|
CROSSREFS
|
Column 2 is A000110(n-1)
Column 4 is A020557(n-1)
Column 6 is A208051
Row 2 is A000110(n-2)
Row 4 is A216462
Row 6 is A216464
Even squares: A216460
Sequence in context: A156748 A351455 A075445 * A194447 A307219 A345764
Adjacent sequences: A216609 A216610 A216611 * A216613 A216614 A216615
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin Sep 10 2012
|
|
STATUS
|
approved
|
|
|
|