login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216612
T(n,k)=Number of horizontal, diagonal and antidiagonal neighbor colorings of the odd squares of an nXk array with new integer colors introduced in row major order
10
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 5, 2, 2, 5, 15, 20, 15, 5, 2, 15, 41, 203, 67, 52, 5, 5, 52, 716, 3429, 4140, 1335, 203, 15, 5, 203, 2847, 83440, 83437, 115975, 6097, 877, 15, 15, 877, 83440, 2711768, 18171918, 20880505, 4213597, 192713, 4140, 52, 15, 4140
OFFSET
1,9
COMMENTS
Table starts
...1......1.........1............1..............1................2
...1......1.........1............2..............5...............15
...1......2.........2...........15.............41..............716
...2......5........20..........203...........3429............83440
...2.....15........67.........4140..........83437.........18171918
...5.....52......1335.......115975.......20880505.......6423127757
...5....203......6097......4213597......942420901....3376465219485
..15....877....192713....190899322...484968748793.2486327138729353
..15...4140...1094076..10480142147.33862631596393
..52..21147..49055292.682076806159
..52.115975.329588907
.203.678570
LINKS
EXAMPLE
Some solutions for n=4 k=4
..x..0..x..1....x..0..x..1....x..0..x..1....x..0..x..1....x..0..x..1
..2..x..3..x....2..x..3..x....1..x..2..x....2..x..3..x....1..x..2..x
..x..4..x..2....x..1..x..2....x..0..x..3....x..4..x..0....x..3..x..4
..5..x..6..x....4..x..3..x....2..x..1..x....2..x..5..x....0..x..2..x
CROSSREFS
Column 2 is A000110(n-1)
Column 4 is A020557(n-1)
Column 6 is A208051
Row 2 is A000110(n-2)
Row 4 is A216462
Row 6 is A216464
Even squares: A216460
Sequence in context: A156748 A351455 A075445 * A194447 A307219 A345764
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Sep 10 2012
STATUS
approved