OFFSET
0,2
COMMENTS
REFERENCES
Herbert C. Moore, U.S. Patent 928,320, Patented July 20 1909.
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..1000
Chaim Goodman-Strauss, Analysis of coordination sequences for this tiling using the Coloring Book method
Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also arXiv:1803.08530.
Davide M. Proserpio, Another drawing of the first Moore tiling {Labels: V1 = alpha'''', V2 = alpha''', V3 = alpha'', V4 = beta, V5 = alpha', V6 = alpha]
Rémy Sigrist, Illustration of first terms
Rémy Sigrist, PARI program for A307201
N. J. A. Sloane, Chaim Goodman-Strauss, and others, Discussion and analysis of the coordination sequences for this tiling [On the Tiling List archives]
N. J. A. Sloane, The first Moore tiling [Constructed by copy-and-paste from the illustration in the patent]
N. J. A. Sloane, Fundamental cell
FORMULA
For n >= 1, a(n+4) = a(n) + [21,27,21,21] according as n == [0,1,2,3] mod 4. - Chaim Goodman-Strauss, Mar 31 2019
From Colin Barker, Apr 03 2019: (Start)
G.f.: (1 + 3*x + 9*x^2 + 12*x^3 + 19*x^4 + 24*x^5 + 12*x^6 + 9*x^7 + x^8) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).
a(n) = 2*a(n-4) - a(n-8) for n>8. (End)
E.g.f.: (4 + 3*(1 + x)*cos(x) + 3*(8*x - 1)*cosh(x) + 3*(7*x - 5)*sinh(x))/4. - Stefano Spezia, Sep 07 2022
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 30 2019
EXTENSIONS
Terms a(7)-a(20) from Davide M. Proserpio using ToposPro, Apr 01 2019
More terms from Rémy Sigrist, Apr 02 2019
STATUS
approved