login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307093
a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k^2).
2
1, 0, -1, -2, -2, 1, 10, 29, 63, 117, 191, 265, 264, -12, -1014, -3654, -9634, -21929, -45424, -87551, -158289, -267616, -415513, -563200, -561430, 12625, 2202084, 8368243, 23532027, 57848882, 131000395, 279675274, 569701663, 1114392742, 2099105261, 3805794420
OFFSET
0,4
LINKS
MATHEMATICA
a[n_] := Sum[(-1)^k * Binomial[n, k^2], {k, 0, n}]; Array[a, 36, 0] (* Amiram Eldar, May 20 2021 *)
PROG
(PARI) {a(n) = sum(k=0, sqrtint(n), (-1)^k*binomial(n, k^2))}
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 24 2019
STATUS
approved