login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..floor(n/7)} (-1)^k*binomial(n,7*k).
2

%I #17 May 26 2021 00:55:54

%S 1,1,1,1,1,1,1,0,-7,-35,-119,-329,-791,-1715,-3430,-6419,-11319,

%T -18767,-28763,-38759,-38759,0,149205,571781,1613129,3964051,8934121,

%U 18874261,37748522,71705865,129080161,218205281,339081225,459957169,459957169,0,-1749692735

%N a(n) = Sum_{k=0..floor(n/7)} (-1)^k*binomial(n,7*k).

%H Seiichi Manyama, <a href="/A307041/b307041.txt">Table of n, a(n) for n = 0..3000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7).

%F G.f.: (1 - x)^6/((1 - x)^7 + x^7).

%F a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) for n > 6.

%t a[n_] := Sum[(-1)^k * Binomial[n,7*k], {k,0,Floor[n/7]}]; Array[a, 37, 0] (* _Amiram Eldar_, May 25 2021 *)

%o (PARI) {a(n) = sum(k=0, n\7, (-1)^k*binomial(n, 7*k))}

%o (PARI) N=66; x='x+O('x^N); Vec((1-x)^6/((1-x)^7+x^7))

%Y Column 7 of A307039.

%Y Cf. A306852.

%K sign,easy

%O 0,9

%A _Seiichi Manyama_, Mar 21 2019