login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307041
a(n) = Sum_{k=0..floor(n/7)} (-1)^k*binomial(n,7*k).
2
1, 1, 1, 1, 1, 1, 1, 0, -7, -35, -119, -329, -791, -1715, -3430, -6419, -11319, -18767, -28763, -38759, -38759, 0, 149205, 571781, 1613129, 3964051, 8934121, 18874261, 37748522, 71705865, 129080161, 218205281, 339081225, 459957169, 459957169, 0, -1749692735
OFFSET
0,9
FORMULA
G.f.: (1 - x)^6/((1 - x)^7 + x^7).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) for n > 6.
MATHEMATICA
a[n_] := Sum[(-1)^k * Binomial[n, 7*k], {k, 0, Floor[n/7]}]; Array[a, 37, 0] (* Amiram Eldar, May 25 2021 *)
PROG
(PARI) {a(n) = sum(k=0, n\7, (-1)^k*binomial(n, 7*k))}
(PARI) N=66; x='x+O('x^N); Vec((1-x)^6/((1-x)^7+x^7))
CROSSREFS
Column 7 of A307039.
Cf. A306852.
Sequence in context: A015667 A206723 A309920 * A325732 A124090 A250284
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Mar 21 2019
STATUS
approved