login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A307026
Number of (undirected) paths in the m X n king graph (triangle read by rows with m = 1..n and n = 1..).
8
0, 1, 30, 3, 235, 5148, 6, 1448, 96956, 6014812, 10, 7909, 1622015, 329967798, 57533191444, 15, 40674, 25281625, 16997993692, 9454839968415, 4956907379126694, 21, 202719, 375341540, 834776217484, 1482823362091281, 2480146959625512771, 3954100866385811897908
OFFSET
1,3
COMMENTS
Paths of length zero are not counted here. - Seiichi Manyama, Dec 15 2020
LINKS
Eric Weisstein's World of Mathematics, Graph Path
Eric Weisstein's World of Mathematics, King Graph
FORMULA
T(1, n) = binomial(n, 2).
T(n, n) = A288033(n).
EXAMPLE
0;
1, 30;
3, 235, 5148;
6, 1448, 96956, 6014812;
10, 7909, 1622015, 329967798, 57533191444;
15, 40674, 25281625, 16997993692, ...;
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A(start, goal, n, k):
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
paths = GraphSet.paths(start, goal)
return paths.len()
def A307026(n, k):
m = k * n
s = 0
for i in range(1, m):
for j in range(i + 1, m + 1):
s += A(i, j, n, k)
return s
print([A307026(n, k) for n in range(1, 8) for k in range(1, n + 1)]) # Seiichi Manyama, Dec 15 2020
CROSSREFS
Row n=2..5 give: A339750, A339751, A358626, A358920.
Cf. A288033 (n X n king graph), A288518.
Sequence in context: A040888 A331033 A040889 * A040882 A040883 A055517
KEYWORD
nonn,tabl
AUTHOR
Eric W. Weisstein, Mar 20 2019
EXTENSIONS
a(20)-a(28) from Seiichi Manyama, Dec 15 2020
STATUS
approved