login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307005
Expansion of e.g.f. (2*exp(x)-2*x-x^2)/(2-2*x-x^2).
2
1, 1, 3, 13, 71, 486, 3982, 38081, 416145, 5116222, 69888746, 1050168417, 17214678241, 305703953660, 5846391071172, 119794781201881, 2618283427770737, 60802908515558346, 1495049717728972990, 38803241993010963977, 1060124286228724147641, 30411290829335509535632
OFFSET
0,3
COMMENTS
Number of totally ordered partitions on an n-element set where each non-minimal class contains at most 2 elements.
Convention a(0) = 1.
LINKS
Jimmy Devillet, On the single-peakedness property, International summer school "Preferences, decisions and games" (Sorbonne Université, Paris, 2019).
J. Devillet, J.-L. Marichal, and B. Teheux Classifications of quasitrivial semigroups, arXiv:1811.11113 [math.RA], 2018.
FORMULA
Recurrence: a(1) = 1, a(2) = 3, a(n+2) = 1 + (n+2)*a(n+1) + (1/2)*(n+2)*(n+1)*a(n).
a(n) = Sum_{i=0..n} (n!/(n + 1 - i)!)*((sqrt(3)/3)*((1 + sqrt(3))/2)^i - (sqrt(3)/3)*((1 - sqrt(3))/2)^i).
MATHEMATICA
Nest[Append[#1, 1 + #2 #1[[-1]] + #2 (#2 - 1) #1[[-2]]/2 ] & @@ {#, Length@ #} &, {1, 1, 3}, 19] (* Michael De Vlieger, Apr 21 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace((2*exp(x)-2*x-x^2)/(2-2*x-x^2))) \\ Felix Fröhlich, Mar 19 2019
CROSSREFS
Cf. A307006.
Sequence in context: A302699 A137983 A327677 * A059032 A214812 A188051
KEYWORD
nonn,easy
AUTHOR
J. Devillet, Mar 19 2019
EXTENSIONS
More terms from Michel Marcus, Apr 20 2019
STATUS
approved