The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306739 n-th derivative of f_{n+1} at x=1, where f_k is the k-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways. 2
 1, 1, 4, 9, 156, 650, 5034, 26054, 4270304, 27617616, 198832320, 6251899104, 46466835072, 5033625978576, 37552294300416, 793996577407560, 6563364026374464, 13221301266369115200, 114481557932032050048, 1114510139284499182656, 109640692903857698897280 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The ordering of the functions f_k is defined in A215703: f_1, f_2, ... = x, x^x, x^(x^2), x^(x^x), x^(x^3), x^(x^x*x), x^(x^(x^2)), x^(x^(x^x)), x^(x^4), x^(x^x*x^2), ... . LINKS Alois P. Heinz, Table of n, a(n) for n = 0..400 FORMULA a(n) = A215703(n,n+1). EXAMPLE a(0) = x_{x=1} = 1. a(1) = (d/dx x^x)_{x=1} = (x^x*(log(x)+1))_{x=1} = log(1)+1 = 1. a(2) = (d^2/dx^2 x^(x^2))_{x=1} = (x^(x^2) * (2*x*log(x)+x)^2 + x^(x^2) * (2*log(x)+3))_{x=1} = (2*log(1)+1)^2 + 2*log(1)+3 = 4. a(3) = (d^3/dx^3 x^(x^x))_{x=1} = 9. a(4) = (d^4/dx^4 x^(x^3))_{x=1} = 156. MAPLE T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1\$2))) end: g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(       seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=       combinat[choose]([\$1..nops(T(i))+j-1], j)), j=0..n/i)])     end: f:= proc() local i, l; i, l:= 0, []; proc(n) while n>       nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end     end(): a:= n-> n!*coeff(series(subs(x=x+1, f(n+1)), x, n+1), x, n): seq(a(n), n=0..23); CROSSREFS Main diagonal of A215703. Sequence in context: A061269 A061271 A084009 * A318616 A029738 A067072 Adjacent sequences:  A306736 A306737 A306738 * A306740 A306741 A306742 KEYWORD nonn AUTHOR Alois P. Heinz, Mar 06 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 09:10 EST 2021. Contains 349484 sequences. (Running on oeis4.)