|
|
A306655
|
|
Numbers n such that lcm(sigma(n), n) = tau(n) * sigma(n) where sigma(k) = the sum of the divisors of k (A000203) and tau(k) = the number of divisors of k (A000005).
|
|
0
|
|
|
1, 2, 18, 468, 9360, 10880, 79360, 84480, 387072, 777216, 3801600, 7282688, 15037440, 17418240, 27067392, 65544192, 752903424, 1218032640, 4227842304, 4737761280, 6410638080, 11949932544, 19327057920, 26372530800, 37645171200, 224956569600, 243520929792, 876611248128
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Numbers n such that A009242(n) = A000005(n) * A000203(n) = A064840(n).
Also numbers n such that A017666(n) = denominator(sigma(n)/n) = tau(n) = A000005(n).
a(29) > 10^12. - Giovanni Resta, Mar 04 2019
|
|
LINKS
|
Table of n, a(n) for n=1..28.
|
|
EXAMPLE
|
18 is a term because lcm(sigma(18), 18) = lcm(39, 18) = 234 = tau(18) * sigma(18) = 6 * 39.
|
|
MATHEMATICA
|
Select[Range[1000000], LCM[DivisorSigma[1, #], #] == DivisorSigma[0, #] * DivisorSigma[1, #]&] (* Vaclav Kotesovec, Mar 04 2019 *)
|
|
PROG
|
(MAGMA) [n: n in [1..1000000] | LCM(SumOfDivisors(n), n) eq NumberOfDivisors(n)* SumOfDivisors(n)]
(PARI) isok(n) = my(sn = sigma(n)); lcm(sn, n) == sn*numdiv(n); \\ Michel Marcus, Mar 04 2019
|
|
CROSSREFS
|
Cf. A000005, A000203, A009242, A064840.
Cf. A069810 (gcd(sigma(n), n) = tau(n)).
Sequence in context: A351052 A082402 A208055 * A156907 A053916 A355131
Adjacent sequences: A306652 A306653 A306654 * A306656 A306657 A306658
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jaroslav Krizek, Mar 03 2019
|
|
EXTENSIONS
|
a(13)-a(16) from Vaclav Kotesovec, Mar 04 2019
a(17) from Daniel Suteu, Mar 04 2019
a(18)-a(28) from Giovanni Resta, Mar 04 2019
|
|
STATUS
|
approved
|
|
|
|