login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306649
a(n) = numerator of Sum_{d|n} (d/sigma(d)) where sigma(k) = the sum of the divisors of k (A000203).
1
1, 5, 7, 47, 11, 35, 15, 97, 127, 55, 23, 47, 27, 25, 77, 3567, 35, 635, 39, 517, 105, 115, 47, 97, 491, 45, 1621, 235, 59, 385, 63, 37063, 161, 175, 55, 5969, 75, 13, 27, 1067, 83, 175, 87, 1081, 1397, 235, 95, 3567, 1247, 2455, 245, 423, 107, 1621, 253, 291
OFFSET
1,2
COMMENTS
Sum_{d|n} (d/sigma(d)) >= 1 for all n >= 1.
FORMULA
a(p) = 2p + 1 for p = odd primes.
EXAMPLE
Sum_{d|n} (d/sigma(d)) for n >= 1: 1, 5/3, 7/4, 47/21, 11/6, 35/12, 15/8, 97/35, 127/52, 55/18, 23/12, 47/12, 27/14, ...
For n=4; Sum_{d|4} (d/sigma(d)) = 1/sigma(1) + 2/sigma(2) + 4/sigma(4) = 1/1 + 2/3 + 4/7 = 47/21; a(4) = 47.
PROG
(Magma) [Numerator(&+[d / SumOfDivisors(d): d in Divisors(n)]): n in [1..100]]
(PARI) a(n) = numerator(sumdiv(n, d, d/sigma(d))); \\ Michel Marcus, Mar 03 2019
CROSSREFS
Cf. A000203, A306650 (denominators).
Sequence in context: A066219 A278618 A174267 * A075830 A058313 A120301
KEYWORD
nonn,frac
AUTHOR
Jaroslav Krizek, Mar 03 2019
STATUS
approved