login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306523
Number of permutations p of [n] having no index i with |p(i)-i| = 2.
3
1, 1, 2, 3, 9, 34, 176, 1106, 8241, 70371, 676098, 7204713, 84252233, 1072010712, 14738107136, 217656602456, 3435793029849, 57721548509705, 1028183730411650, 19354550056977555, 383876766917923073, 8001053425278668706, 174828593537337033648, 3996207024319062050994
OFFSET
0,3
LINKS
Wikipedia, Permutation
FORMULA
a(n) = n! - A306524(n).
EXAMPLE
a(3) = 3: 123, 132, 213.
a(4) = 9: 1234, 1243, 1324, 2134, 2143, 2341, 4123, 4231, 4321.
a(5) = 34: 12345, 12354, 12435, 13245, 13254, 13452, 15234, 15342, 15432, 21345, 21354, 21435, 23415, 23451, 25314, 25341, 25431, 41235, 41352, 42315, 42351, 43215, 43251, 45231, 45312, 51234, 51342, 51432, 52314, 52341, 52431, 53214, 53241, 53412.
MATHEMATICA
b[s_, k_] := b[s, k] = With[{n = Length[s]}, If[n == 0, 1, Sum[If[Abs[i-n] == k, 0, b[s~Complement~{i}, k]], {i, s}]]];
A[n_, k_] := If[k >= n, n!, b[Range[n], k]];
a[n_] := A[n, 2];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 31 2021, after Alois P. Heinz in A306512 *)
CROSSREFS
Column k=2 of A306512.
Sequence in context: A296263 A064020 A204442 * A095412 A074428 A328436
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 21 2019
STATUS
approved