login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306521
Least integer N > 2 such that the number of primes (<=N) <= the number of base-n-zero containing numbers (<=N).
4
3, 3, 4, 28, 42, 104, 136, 329, 510, 856, 1449, 2212, 2782, 3434, 4188, 5042, 6001, 7082, 8276, 9604, 11062, 12666, 14405, 31651, 35694, 40061, 66427, 73966, 108764, 149756, 197516, 288280, 354924, 515538, 701002, 963687, 1318399, 1840377
OFFSET
2,1
COMMENTS
a(n) <= A306526(n), equality holds for n = 2, 14, 15, 16, 17, 18, 19, 20, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52 (but a(n) < A306526(n) for all other indices n up to 82). For sufficiently large n, equality holds true for those bases n which satisfy 1/2 <= fract(sqrt(n/log(n)) + O(sqrt(log(n)/n))) < 3/4. This is true for infinitely many further indices, at least for all bases n = ceiling(x), where x is a solution of x/log(x) = k-th triangular number + 1/4, k > 1. For k = 2..10 the corresponding bases are n = 19, 48, 92, 152, 230, 326, 440, 574, 727. Let e(n) be the number of bases m <= n for which a(m) = A306526(m), then lim_{n->infinity} e(n)/n >= 1/4. Conjecture: lim_{n->infinity} e(n)/n = 1/4.
LINKS
FORMULA
With numOfZeroNum_n(k) [= the number of base-n-zero containing numbers <= k] and pi(k) [= the number of primes <= k] and d := log(n-1)/log(n):
a(n) = min(k > 2 | pi(k) <= numOfZeroNum_n(k)). Because of d = d(n) < 1, numOfZeroNum_n(k) = k*(1 + O(k^(d-1)), pi(k) = k/log(k)*(1+o(1)), and pi(3) = 2 >= 2 = numOfZeroNum_n(3), this minimum always exists (for n > 2). The case n = 2 is obvious. See A324160 regarding general formulas for numOfZeroNum_n(k).
Estimate of the n-th term:
a(n) > e*(1 + c1/c2*(1 + sqrt(1 + c2*c3/c1^2)))^(1/(1-d)), for n > 6,
where d := log(n-1)/log(n),
c0 := e^(1-d),
c1 := (n-1)^d/(n-2) - 1/e^(sqrt(n*log(n))) - d*c0,
c2 := (n-1)^d/(n-2) - 1/e^(sqrt(n*log(n))) + (1 - 1/sqrt(n*log(n)))*c0,
c3 := 2*(1-d)*c0.
Also, but less accurate, for n > 6,
a(n) > e*(1 + 1/(sqrt(n*log(n)) - 2))^(1/(1-d)).
a(n) > e*(1 + 1/(sqrt(n*log(n)) - 2))^((n-1/2)*log(n)).
a(n) <= A306526(n), see A306526 for further upper bound estimations.
Asymptotic behavior:
a(n) = O(sqrt(n)*e^sqrt(n*log(n))).
lim sup a(n)/e^(sqrt(n*log(n))+(log(n)+1)/2) = 1, for n --> infinity.
lim inf a(n)/e^(sqrt(n*log(n))+1/2) = 1, for n --> infinity.
EXAMPLE
a(2) = 3, since pi(3) = 2 <= 2 = numOfZeroNum_2(3), where numOfZeroNum_2(m) is the number of base-2-zero containing numbers <= m and pi(m) = number of primes <= m. The first base-2-zero containing numbers are 0 = 0_2, 2 = 10_2, 4 = 100_2, ... (Hint: numbers <= 2 are out of scope for self-evident reasons).
a(3) = 3, since pi(3) = 2 <= 2 = numOfZeroNum_3(3), where numOfZeroNum_3(m) is the number of base-3-zero containing numbers <= m and pi(m) = number of primes <= m. The first base-3-zero containing numbers are 0 = 0_2, 3 = 10_3, 6 = 20_3, 9 = 100_3, 10 = 101_3, 11 = 102_3, 12 = 120_3, ...
a(4) = 4, since pi(3) = 2 > 1 = numOfZeroNum_4(3), pi(4) = 2 <= 2 = numOfZeroNum_4(4), where numOfZeroNum_4(m) is the number of base-4-zero containing numbers <= m and pi(m) = number of primes <= m. The first base-4-zero containing numbers are 0 = 0_2, 4 = 10_4, 8 = 20_4, ...
PROG
(PARI) cz(m, n) = vecmin(digits(m, n))==0;
a(n) = {my(m=2, nbz=1+sum(k=1, 2, cz(k, n)), pmp=primepi(2)); for (m=3, oo, if (isprime(m), pmp++); if (cz(m, n), nbz++); if (pmp <= nbz, return (m)); ); } \\ Michel Marcus, Jun 10 2019
KEYWORD
nonn,base
AUTHOR
Hieronymus Fischer, Mar 29 2019
STATUS
approved