login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306501 Primes p such that 2, 3, 5, 7, ..., 37 are all quadratic nonresidues modulo p. 1

%I

%S 163,74093,92333,170957,222643,225077,253507,268637,292157,328037,

%T 360293,517613,524453,530837,613637,641093,679733,781997,847997,

%U 852893,979373,991027,1096493,1110413,1333963,1398053,1730357,1821893,2004917,2055307,2056147,2079173

%N Primes p such that 2, 3, 5, 7, ..., 37 are all quadratic nonresidues modulo p.

%C The prime number 163 is famous for having 2, 3, 5, 7, ..., 37 as quadratic nonresidues, because the smallest prime having 2, 3, 5, 7, ..., 41 as quadratic nonresidues, namely 74093, is 453.5 times larger. This is related to the fact that the quadratic field Q[sqrt(-163)] is a unique factorization domain.

%C If p is in the sequence then so are all primes q with q == p (mod 29682952539240), where 29682952539240 = 2^3*3*5*7*11*13*17*19*23*29*31*37. In particular, the sequence is infinite. - _Robert Israel_, Mar 31 2019

%H Robert Israel, <a href="/A306501/b306501.txt">Table of n, a(n) for n = 1..2694</a>

%p N:= 3*10^6: # to get all terms <= N

%p S:= {seq(8*i+3, i=1..(N-3)/8)} union {seq(8*i+5,i=1..(N-5)/8)}:

%p for p in select(isprime, [$3..37]) do

%p R:= select(t -> numtheory:-legendre(t,p) = 1, {$1..p-1});

%p if p mod 4 = 1 then S:= remove(t -> member(t mod p, R), S)

%p else S:= select(t -> member(t mod p, R) = evalb(t mod 4 = 3), S)

%p fi;

%p od:

%p sort(convert(select(isprime,S),list)); # _Robert Israel_, Mar 31 2019

%o (PARI) forprime(p=2, 1e6, if(sum(k=1, 37, isprime(k)*kronecker(k, p))==-12, print1(p, ", ")))

%Y Cf. A191089.

%K nonn

%O 1,1

%A _Jianing Song_, Feb 19 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 9 06:59 EDT 2020. Contains 333344 sequences. (Running on oeis4.)