OFFSET
1,1
COMMENTS
The prime number 163 is famous for having 2, 3, 5, 7, ..., 37 as quadratic nonresidues, because the smallest prime having 2, 3, 5, 7, ..., 41 as quadratic nonresidues, namely 74093, is 453.5 times larger. This is related to the fact that the quadratic field Q[sqrt(-163)] is a unique factorization domain.
If p is in the sequence then so are all primes q with q == p (mod 29682952539240), where 29682952539240 = 2^3*3*5*7*11*13*17*19*23*29*31*37. In particular, the sequence is infinite. - Robert Israel, Mar 31 2019
LINKS
Robert Israel, Table of n, a(n) for n = 1..2694
MAPLE
N:= 3*10^6: # to get all terms <= N
S:= {seq(8*i+3, i=1..(N-3)/8)} union {seq(8*i+5, i=1..(N-5)/8)}:
for p in select(isprime, [$3..37]) do
R:= select(t -> numtheory:-legendre(t, p) = 1, {$1..p-1});
if p mod 4 = 1 then S:= remove(t -> member(t mod p, R), S)
else S:= select(t -> member(t mod p, R) = evalb(t mod 4 = 3), S)
fi;
od:
sort(convert(select(isprime, S), list)); # Robert Israel, Mar 31 2019
PROG
(PARI) forprime(p=2, 1e6, if(sum(k=1, 37, isprime(k)*kronecker(k, p))==-12, print1(p, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Feb 19 2019
STATUS
approved