login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306501 Primes p such that 2, 3, 5, 7, ..., 37 are all quadratic nonresidues modulo p. 1
163, 74093, 92333, 170957, 222643, 225077, 253507, 268637, 292157, 328037, 360293, 517613, 524453, 530837, 613637, 641093, 679733, 781997, 847997, 852893, 979373, 991027, 1096493, 1110413, 1333963, 1398053, 1730357, 1821893, 2004917, 2055307, 2056147, 2079173 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The prime number 163 is famous for having 2, 3, 5, 7, ..., 37 as quadratic nonresidues, because the smallest prime having 2, 3, 5, 7, ..., 41 as quadratic nonresidues, namely 74093, is 453.5 times larger. This is related to the fact that the quadratic field Q[sqrt(-163)] is a unique factorization domain.

If p is in the sequence then so are all primes q with q == p (mod 29682952539240), where 29682952539240 = 2^3*3*5*7*11*13*17*19*23*29*31*37. In particular, the sequence is infinite. - Robert Israel, Mar 31 2019

LINKS

Robert Israel, Table of n, a(n) for n = 1..2694

MAPLE

N:= 3*10^6: # to get all terms <= N

S:= {seq(8*i+3, i=1..(N-3)/8)} union {seq(8*i+5, i=1..(N-5)/8)}:

for p in select(isprime, [$3..37]) do

  R:= select(t -> numtheory:-legendre(t, p) = 1, {$1..p-1});

  if p mod 4 = 1 then S:= remove(t -> member(t mod p, R), S)

  else S:= select(t -> member(t mod p, R) = evalb(t mod 4 = 3), S)

  fi;

od:

sort(convert(select(isprime, S), list)); # Robert Israel, Mar 31 2019

PROG

(PARI) forprime(p=2, 1e6, if(sum(k=1, 37, isprime(k)*kronecker(k, p))==-12, print1(p, ", ")))

CROSSREFS

Cf. A191089.

Sequence in context: A217963 A138200 A146504 * A247269 A145741 A247273

Adjacent sequences:  A306498 A306499 A306500 * A306502 A306503 A306504

KEYWORD

nonn

AUTHOR

Jianing Song, Feb 19 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 21:58 EST 2020. Contains 332295 sequences. (Running on oeis4.)