login
A306501
Primes p such that 2, 3, 5, 7, ..., 37 are all quadratic nonresidues modulo p.
1
163, 74093, 92333, 170957, 222643, 225077, 253507, 268637, 292157, 328037, 360293, 517613, 524453, 530837, 613637, 641093, 679733, 781997, 847997, 852893, 979373, 991027, 1096493, 1110413, 1333963, 1398053, 1730357, 1821893, 2004917, 2055307, 2056147, 2079173
OFFSET
1,1
COMMENTS
The prime number 163 is famous for having 2, 3, 5, 7, ..., 37 as quadratic nonresidues, because the smallest prime having 2, 3, 5, 7, ..., 41 as quadratic nonresidues, namely 74093, is 453.5 times larger. This is related to the fact that the quadratic field Q[sqrt(-163)] is a unique factorization domain.
If p is in the sequence then so are all primes q with q == p (mod 29682952539240), where 29682952539240 = 2^3*3*5*7*11*13*17*19*23*29*31*37. In particular, the sequence is infinite. - Robert Israel, Mar 31 2019
LINKS
MAPLE
N:= 3*10^6: # to get all terms <= N
S:= {seq(8*i+3, i=1..(N-3)/8)} union {seq(8*i+5, i=1..(N-5)/8)}:
for p in select(isprime, [$3..37]) do
R:= select(t -> numtheory:-legendre(t, p) = 1, {$1..p-1});
if p mod 4 = 1 then S:= remove(t -> member(t mod p, R), S)
else S:= select(t -> member(t mod p, R) = evalb(t mod 4 = 3), S)
fi;
od:
sort(convert(select(isprime, S), list)); # Robert Israel, Mar 31 2019
PROG
(PARI) forprime(p=2, 1e6, if(sum(k=1, 37, isprime(k)*kronecker(k, p))==-12, print1(p, ", ")))
CROSSREFS
Cf. A191089.
Sequence in context: A217963 A138200 A146504 * A247269 A145741 A247273
KEYWORD
nonn
AUTHOR
Jianing Song, Feb 19 2019
STATUS
approved