The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A306394 Numbers k == 0 or 2 (mod 6) which are not the sum of a prime and the square of a prime. 1
 0, 2, 8, 18, 24, 74, 170, 324, 614, 704, 1010, 1164, 1296, 2304, 3600, 4356, 5184, 6084, 9216, 10404, 11664, 14400, 15054, 15876, 19044, 20736, 21774, 22500, 24336, 24476, 26244, 28224, 34596, 39204, 41616, 44100, 46656, 49284, 51984, 60516, 66564, 69696, 72900, 76176, 82944, 90000, 93636, 97344 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Contains 36*k^2 unless 6*k-1 is in A005384. Are 2, 8, 18, 24, 74, 170, 614, 704, 1010, 1164, 15054, 21774, 24476 the only terms not == 0 or 36 (mod 144)? LINKS Robert Israel, Table of n, a(n) for n = 1..652 A. V. Kumchev and J. Y. Liu, Sums of primes and squares of primes in short intervals, Monatsh. Math. 157 (2009), 335-363. EXAMPLE 24 is in the sequence because 24 == 0 (mod 6) and 24 can't be written as p+q^2 where p and q are primes. MAPLE N:= 50000: # to get all terms <= N P:= select(isprime, [2, seq(i, i=3..N, 2)]): P2:= select(`<=`, map(`^`, P, 2), N): PP2:= {seq(seq(s+t, s=P), t=P2)}: sort(convert({seq(seq(6*i+j, i=1=0..(N-j)/6), j=[0, 2])} minus PP2, list)); CROSSREFS Cf. A005384, A109136. Sequence in context: A320662 A171613 A338140 * A109136 A295522 A065131 Adjacent sequences: A306391 A306392 A306393 * A306395 A306396 A306397 KEYWORD nonn AUTHOR Robert Israel, Feb 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 06:32 EDT 2024. Contains 374481 sequences. (Running on oeis4.)