

A306197


The label of the largest square that an (m,n)leaper (a generalization of a chess knight) reaches before it can no longer move, starting on a board with squares spirally numbered, starting at 1. Each move is to the lowestnumbered unvisited square.


0



3199, 9173, 7416, 16270, 12669, 4238, 36667, 10947, 4851, 15027, 34407, 36777, 28411, 29623, 5832, 237635, 17075, 14329, 17064, 8669, 9152, 191876, 65307, 10536, 50425, 7243, 17187, 9730, 307545, 45627, 82813, 16948, 24847, 66622, 23741, 24678, 259181, 147061, 48250, 43525, 78711, 19501, 18600, 59821, 15410, 334131
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The entries are the lower triangle of an array, for (m,n)leaper, where 1 <= n < m, ordered: (2,1), (3,1), (3,2), (4,1), (4,2), etc. Are all terms finite?


LINKS

Table of n, a(n) for n=1..46.
N. J. A. Sloane and Brady Haran, The Trapped Knight, Numberphile video (2019).


EXAMPLE

A chess knight (a (2,1)leaper) reaches the square labeled 3199 before it reaches the square labeled 2084 and has no moves available (see A316667).


CROSSREFS

Cf. A316667, A323749, A323750, A317106, A317471, A317416, A323750, A317438, A317916.
Sequence in context: A250386 A069401 A225056 * A211840 A235786 A235781
Adjacent sequences: A306194 A306195 A306196 * A306198 A306199 A306200


KEYWORD

nonn,tabf


AUTHOR

Jud McCranie, Jan 28 2019


STATUS

approved



