login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306148
a(n) = numerator(n!*[z^n](z*(exp(z)+2*exp(-(1/2)*z)*cos((1/2)*z* 3^(1/2)))/(1-exp(-z)))).
1
3, 3, 1, 3, 59, 5, 43, 7, 139, 9, -127, 11, 62099, 13, -2513, 15, 278923, 17, -16761307, 19, 13372769, 21, -327211439, 23, 18102814403, 25, -655076773, 27, 1818961119031, 29, -659884043593273, 31, 6494995052521753, 33, -197424183925133, 35, 2015477183184289687757
OFFSET
0,1
FORMULA
a(2*n - 3) = 2*n - 3 for n >= 3.
EXAMPLE
Rational values start: 3, 3/2, 1/2, 3, 59/10, 5, 43/14, 7, 139/10, 9, -127/22, 11, 62099/910, 13, -2513/10, 15, 278923/170, 17, ....
MAPLE
gf := z*(exp(z)+2*exp(-(1/2)*z)*cos((1/2)*z*sqrt(3)))/(1-exp(-z));
ser := series(gf, z, 100): seq(numer(n!*coeff(ser, z, n)), n=0..36);
CROSSREFS
Cf. A306149 (denominator).
Sequence in context: A366556 A275625 A331901 * A106836 A241235 A125607
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Aug 19 2018
STATUS
approved