login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305975
Filter sequence: All prime powers p^k, k >= 1, are allotted to distinct equivalence classes according to their exponent k, while all other numbers occur in singular equivalence classes of their own.
5
1, 2, 2, 3, 2, 4, 2, 5, 3, 6, 2, 7, 2, 8, 9, 10, 2, 11, 2, 12, 13, 14, 2, 15, 3, 16, 5, 17, 2, 18, 2, 19, 20, 21, 22, 23, 2, 24, 25, 26, 2, 27, 2, 28, 29, 30, 2, 31, 3, 32, 33, 34, 2, 35, 36, 37, 38, 39, 2, 40, 2, 41, 42, 43, 44, 45, 2, 46, 47, 48, 2, 49, 2, 50, 51, 52, 53, 54, 2, 55, 10, 56, 2, 57, 58, 59, 60, 61, 2, 62, 63, 64, 65, 66, 67, 68, 2, 69, 70, 71
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of A305974.
For all i, j: A305800(i) = A305800(j) => a(i) = a(j) => A305976(i) = A305976(j).
LINKS
FORMULA
a(prime) = 2, a(prime^2) = 3, a(prime^3) = 5, a(prime^4) = 10, a(prime^5) = 19.
PROG
(PARI)
up_to = 100000;
partialsums(f, up_to) = { my(v = vector(up_to), s=0); for(i=1, up_to, s += f(i); v[i] = s); (v); }
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
v065515 = partialsums(n -> (omega(n)<=1), up_to);
A065515(n) = v065515[n];
A085970(n) = (n - A065515(n));
A305974(n) = if(1==n, n, my(e = isprimepower(n)); if(e, -e, 1+A085970(n)));
v305975 = rgs_transform(vector(up_to, n, A305974(n)));
A305975(n) = v305975[n];
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 02 2018
STATUS
approved