login
A305737
Number of subsets S of vectors in GF(2)^n such that span(S) = GF(2)^n.
1
1, 2, 8, 184, 62464, 4293001088, 18446743803209556992, 340282366920938461120638132973980614656, 115792089237316195423570985008687907766497981100801256254562260326801824546816
OFFSET
0,2
COMMENTS
Asymptotic to A001146(n) = 2^(2^n).
REFERENCES
R. P. Stanley, Enumerative Combinatorics Vol 1, Cambridge, 1997, page 127.
LINKS
FORMULA
a(n) = Sum_{k=0..n} A022166(n,k)*(-1)^(n-k)*2^binomial(n-k,2)*(2^(2^k)-1).
Sum_{k=0..n} a(k)* A022166(n,k) = 2^(2^n) - 1. Geoffrey Critzer, Apr 25 2024
MATHEMATICA
Table[Sum[QBinomial[n, k, q] (-1)^(n - k) q^Binomial[n - k, 2] (2^(q^k) - 1) /. q -> 2, {k, 0, n}], {n, 0, 8}]
PROG
(PARI) \\ here U(n, k) is A022166(n, k).
U(n, k)={polcoeff(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)}
a(n)={sum(k=0, n, U(n, k)*(-1)^(n-k)*2^binomial(n-k, 2)*(2^(2^k)-1))} \\ Andrew Howroyd, Mar 01 2020
CROSSREFS
Sequence in context: A181234 A156526 A009505 * A028368 A056990 A234637
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jun 22 2018
EXTENSIONS
a(8) corrected by Andrew Howroyd, Mar 01 2020
STATUS
approved