Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Aug 11 2021 13:36:47
%S 1,1,3,59,1775,71511,3735265,245211865,19803108233,1936950231585,
%T 226553844824131,31331105054010115,5069552336811706983,
%U 950370245531340684983,204551803567400710962529,50129834142929585060592433,13883636379729966042468837937,4315912911594085891292265635265,1496719856496801168910452641821123,575834703501821334832940981183532907
%N O.g.f. A(x) satisfies: 0 = [x^n] exp( n*(n-1) * x * A(x) ) / A(x), for n > 1, with A'(0) = 1.
%C It is remarkable that this sequence should consist entirely of integers.
%H Paul D. Hanna, <a href="/A305597/b305597.txt">Table of n, a(n) for n = 0..300</a>
%F a(n) ~ c * n^(2*n + 2) / exp(2*n), where c = 15.159858073932625358279885219043... - _Vaclav Kotesovec_, Aug 11 2021
%e O.g.f.: A(x) = 1 + x + 3*x^2 + 59*x^3 + 1775*x^4 + 71511*x^5 + 3735265*x^6 + 245211865*x^7 + 19803108233*x^8 + 1936950231585*x^9 + ...
%e RELATED SERIES.
%e A'(x)/A(x) = 1 + 5*x + 169*x^2 + 6857*x^3 + 348121*x^4 + 21952541*x^5 + 1688688793*x^6 + 156361635585*x^7 + 17247060489337*x^8 + ...
%o (PARI) {a(n) = my(A=[1,1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m*(m-1)*x*Ser(A)) / Ser(A) )[m+1] ); A[n+1]}
%o for(n=0, 20, print1(a(n), ", "))
%Y Cf. A305596, A305598.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jun 05 2018