login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305597
O.g.f. A(x) satisfies: 0 = [x^n] exp( n*(n-1) * x * A(x) ) / A(x), for n > 1, with A'(0) = 1.
3
1, 1, 3, 59, 1775, 71511, 3735265, 245211865, 19803108233, 1936950231585, 226553844824131, 31331105054010115, 5069552336811706983, 950370245531340684983, 204551803567400710962529, 50129834142929585060592433, 13883636379729966042468837937, 4315912911594085891292265635265, 1496719856496801168910452641821123, 575834703501821334832940981183532907
OFFSET
0,3
COMMENTS
It is remarkable that this sequence should consist entirely of integers.
LINKS
FORMULA
a(n) ~ c * n^(2*n + 2) / exp(2*n), where c = 15.159858073932625358279885219043... - Vaclav Kotesovec, Aug 11 2021
EXAMPLE
O.g.f.: A(x) = 1 + x + 3*x^2 + 59*x^3 + 1775*x^4 + 71511*x^5 + 3735265*x^6 + 245211865*x^7 + 19803108233*x^8 + 1936950231585*x^9 + ...
RELATED SERIES.
A'(x)/A(x) = 1 + 5*x + 169*x^2 + 6857*x^3 + 348121*x^4 + 21952541*x^5 + 1688688793*x^6 + 156361635585*x^7 + 17247060489337*x^8 + ...
PROG
(PARI) {a(n) = my(A=[1, 1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m*(m-1)*x*Ser(A)) / Ser(A) )[m+1] ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A142642 A201850 A013526 * A369949 A062629 A184953
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 05 2018
STATUS
approved