login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} k!!*(n - k)!!.
2

%I #10 Aug 23 2022 12:12:49

%S 1,2,5,10,26,58,167,414,1324,3606,12729,37674,145578,463770,1944879,

%T 6614190,29852856,107616150,518782545,1970493210,10077228270,

%U 40125873690,216425656215,899557170750,5091758227620,22011865939350,130202223160905,583641857191050,3594820517111250

%N a(n) = Sum_{k=0..n} k!!*(n - k)!!.

%C Convolution of A006882 with itself.

%H Alois P. Heinz, <a href="/A305577/b305577.txt">Table of n, a(n) for n = 0..807</a>

%H Poloni, Federico; Del Corso, Gianna M. <a href="https://doi.org/10.1016/j.laa.2017.06.042">Counting Fiedler pencils with repetitions</a>. Linear Algebra Appl. 532, 463-499 (2017), corollary 24.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DoubleFactorial.html">Double Factorial</a>

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%F G.f.: (Sum_{k>=0} k!!*x^k)^2.

%p a:= proc(n) option remember; `if`(n<4, n^2+1,

%p ((3*n^2-4*n-2)*a(n-2) +(n+1)*a(n-3)

%p -2*a(n-1) -(n-1)^2*n*a(n-4))/(2*n-4))

%p end:

%p seq(a(n), n=0..35); # _Alois P. Heinz_, Jun 14 2018

%t Table[Sum[k!! (n - k)!!, {k, 0, n}], {n, 0, 28}]

%t nmax = 28; CoefficientList[Series[Sum[k!! x^k, {k, 0, nmax}]^2, {x, 0, nmax}], x]

%Y Cf. A003149, A006882, A034430, A059371, A111308, A126674, A305578.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Jun 05 2018