login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305577
a(n) = Sum_{k=0..n} k!!*(n - k)!!.
2
1, 2, 5, 10, 26, 58, 167, 414, 1324, 3606, 12729, 37674, 145578, 463770, 1944879, 6614190, 29852856, 107616150, 518782545, 1970493210, 10077228270, 40125873690, 216425656215, 899557170750, 5091758227620, 22011865939350, 130202223160905, 583641857191050, 3594820517111250
OFFSET
0,2
COMMENTS
Convolution of A006882 with itself.
LINKS
Poloni, Federico; Del Corso, Gianna M. Counting Fiedler pencils with repetitions. Linear Algebra Appl. 532, 463-499 (2017), corollary 24.
Eric Weisstein's World of Mathematics, Double Factorial
FORMULA
G.f.: (Sum_{k>=0} k!!*x^k)^2.
MAPLE
a:= proc(n) option remember; `if`(n<4, n^2+1,
((3*n^2-4*n-2)*a(n-2) +(n+1)*a(n-3)
-2*a(n-1) -(n-1)^2*n*a(n-4))/(2*n-4))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Jun 14 2018
MATHEMATICA
Table[Sum[k!! (n - k)!!, {k, 0, n}], {n, 0, 28}]
nmax = 28; CoefficientList[Series[Sum[k!! x^k, {k, 0, nmax}]^2, {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 05 2018
STATUS
approved