login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305109
O.g.f. A(x,y) satisfies: [x^n] exp( n * x*A(x,y) ) * (n + y - A(x,y)) = 0 for n > 0.
1
1, 0, 1, 2, 2, 2, 15, 30, 18, 6, 232, 492, 400, 144, 24, 5335, 12450, 11450, 5240, 1200, 120, 175416, 439698, 447744, 237612, 69672, 10800, 720, 7847665, 20851502, 22993348, 13653304, 4724328, 956760, 105840, 5040, 460083056, 1283257192, 1509767920, 979072928, 383250880, 92961216, 13700928, 1128960, 40320, 34295632587, 99690153120, 123801126966, 86244590412, 37181530008, 10307520792, 1842700968, 205630272, 13063680, 362880, 3171572232860, 9554655641770, 12424884790780, 9188854250660, 4284505197600, 1318457696960, 271837330560, 37189193040, 3241998720, 163296000, 3628800
OFFSET
0,4
COMMENTS
Note: the factorial series, F(x) = Sum_{n>=0} n! * x^n, satisfies:
(1) [x^n] exp( n * x*F(x) ) * (2 - F(x)) = 0 for n > 0,
(2) [x^n] exp( x*F(x) ) * (n + 1 - F(x)) = 0 for n > 0.
It is remarkable that this triangle should consist entirely of integers.
EXAMPLE
G.f.: A(x,y) = 1 + x*y + x^2*(2 + 2*y + 2*y^2) + x^3*(15 + 30*y + 18*y^2 + 6*y^3) + x^4*(232 + 492*y + 400*y^2 + 144*y^3 + 24*y^4) + x^5*(5335 + 12450*y + 11450*y^2 + 5240*y^3 + 1200*y^4 + 120*y^5) + x^6*(175416 + 439698*y + 447744*y^2 + 237612*y^3 + 69672*y^4 + 10800*y^5 + 720*y^6) + x^7*(7847665 + 20851502*y + 22993348*y^2 + 13653304*y^3 + 4724328*y^4 + 956760*y^5 + 105840*y^6 + 5040*y^7) + x^8*(460083056 + 1283257192*y + 1509767920*y^2 + 979072928*y^3 + 383250880*y^4 + 92961216*y^5 + 13700928*y^6 + 1128960*y^7 + 40320*y^8) + ...
where A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n*y^k satisfies:
[x^n] exp( n * x*A(x,y) ) * (n + y - A(x,y)) = 0 for n > 0.
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y) begins:
1;
0, 1;
2, 2, 2;
15, 30, 18, 6;
232, 492, 400, 144, 24;
5335, 12450, 11450, 5240, 1200, 120;
175416, 439698, 447744, 237612, 69672, 10800, 720;
7847665, 20851502, 22993348, 13653304, 4724328, 956760, 105840, 5040;
460083056, 1283257192, 1509767920, 979072928, 383250880, 92961216, 13700928, 1128960, 40320;
34295632587, 99690153120, 123801126966, 86244590412, 37181530008, 10307520792, 1842700968, 205630272, 13063680, 362880; ...
in which the main diagonal equals the factorials.
PROG
(PARI) {T(n, k) = my(A=[1], m); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp( (m-1)*x*(Ser(A)) ) * (m-1 + y - Ser(A)) )[m] ); polcoeff(A[n+1], k)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A305110 (row sums), A305111 (column 0), A305112 (y=2), A305113 (y=3).
Sequence in context: A129409 A352029 A025521 * A372418 A068218 A098919
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, May 26 2018
STATUS
approved