login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305107
O.g.f. A(x) satisfies: [x^n] exp( n * x*A(x)^2 ) * (n + 1 - A(x)) = 0 for n > 0.
1
1, 1, 10, 216, 7852, 427770, 32649276, 3333409849, 439648389640, 72863444853189, 14835946021507520, 3642615447410904525, 1061681881255681884336, 362470236144441144939674, 143310411318629778406908494, 64968204494588611586367685020, 33478892881907679134025607700400, 19460912067689653469231875029090451, 12674293598137775224869798728198782626, 9192057681791476282831341020711249418814
OFFSET
0,3
COMMENTS
Note: given F(x) = 1 + x * d/dx x*F(x)^2, where x*F(x) is a g.f. of A000699, then
(1) [x^n] exp( x*F(x)^2 ) * (n + 1 - F(x)) = 0 for n > 0,
(2) [x^n] exp( n * x*F(x)^2 ) * (2 - F(x)) = 0 for n > 0.
It is remarkable that this sequence should consist entirely of integers.
EXAMPLE
O.g.f.: A(x) = 1 + x + 10*x^2 + 216*x^3 + 7852*x^4 + 427770*x^5 + 32649276*x^6 + 3333409849*x^7 + 439648389640*x^8 + 72863444853189*x^9 + ...
RELATED SERIES.
A(x)^2 = 1 + 2*x + 21*x^2 + 452*x^3 + 16236*x^4 + 875564*x^5 + 66357788*x^6 + 6744065714*x^7 + 886863035042*x^8 + 146693676869950*x^9 + ...
exp(x*A(x)^2) = 1 + x + 5*x^2/2! + 139*x^3/3! + 11425*x^4/4! + 2009141*x^5/5! + 643102861*x^6/6! + 339114884935*x^7/7! + 274704279360449*x^8/8! + ...
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp( (m-1)*x*(Ser(A)^2) ) * (m - Ser(A)) )[m] ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A305108.
Sequence in context: A274763 A002967 A243476 * A374794 A294850 A259189
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 27 2018
STATUS
approved