Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 09 2020 07:22:40
%S 32,168,412,764,1224,1792,2468,3252,4144,5144,6252,7468,8792,10224,
%T 11764,13412,15168,17032,19004,21084,23272,25568,27972,30484,33104,
%U 35832,38668,41612,44664,47824,51092,54468,57952,61544,65244,69052,72968,76992,81124,85364
%N a(n) = 54*n^2 - 26*n + 4 (n>=1).
%C a(n) is the second Zagreb index of the octagonal network O(n,n); O(m,n) is defined by Fig. 1 of the Siddiqui et al. reference.
%C The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
%C The M-polynomial of O(n,n) is M(O(n,n); x,y) = 4*(n+1)x^2*y^2 + 8(n-1)x^2 *y^3 + (6n^2 - 10n+4)x^3*y^3.
%C More generally, the M-polynomial of O(m,n) is M(O(m,n); x,y) =2(m+n+2)x^2*y^2+4(m+n-2)x^2 *y^3+(6mn-5m-5n+4)x^3*y^3.
%H Colin Barker, <a href="/A304381/b304381.txt">Table of n, a(n) for n = 1..1000</a>
%H E. Deutsch and Sandi Klavzar, <a href="http://dx.doi.org/10.22052/ijmc.2015.10106">M-polynomial and degree-based topological indices</a>, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
%H M. K. Siddiqui, M. Naeem, N. A. Rahman, and M. Imran, <a href="https://joam.inoe.ro/articles/computing-topological-indices-of-certain-networks/">Computing topological indices of certain networks</a>, J. of Optoelectronics and Advanced Materials, 18, No. 9-10, 2016, 884-892.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F From _Colin Barker_, May 13 2018: (Start)
%F G.f.: 4*x*(8 + 18*x + x^2) / (1 - x)^3.
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
%F (End)
%p seq(54*n^2-26*n+4, n = 1 .. 40);
%t Table[54n^2-26n+4,{n,40}] (* or *) LinearRecurrence[{3,-3,1},{32,168,412},40] (* _Harvey P. Dale_, Mar 21 2020 *)
%o (PARI) Vec(4*x*(8 + 18*x + x^2) / (1 - x)^3 + O(x^40)) \\ _Colin Barker_, May 13 2018
%Y Cf. A304380.
%K nonn,easy
%O 1,1
%A _Emeric Deutsch_, May 13 2018