login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304381
a(n) = 54*n^2 - 26*n + 4 (n>=1).
2
32, 168, 412, 764, 1224, 1792, 2468, 3252, 4144, 5144, 6252, 7468, 8792, 10224, 11764, 13412, 15168, 17032, 19004, 21084, 23272, 25568, 27972, 30484, 33104, 35832, 38668, 41612, 44664, 47824, 51092, 54468, 57952, 61544, 65244, 69052, 72968, 76992, 81124, 85364
OFFSET
1,1
COMMENTS
a(n) is the second Zagreb index of the octagonal network O(n,n); O(m,n) is defined by Fig. 1 of the Siddiqui et al. reference.
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of O(n,n) is M(O(n,n); x,y) = 4*(n+1)x^2*y^2 + 8(n-1)x^2 *y^3 + (6n^2 - 10n+4)x^3*y^3.
More generally, the M-polynomial of O(m,n) is M(O(m,n); x,y) =2(m+n+2)x^2*y^2+4(m+n-2)x^2 *y^3+(6mn-5m-5n+4)x^3*y^3.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
M. K. Siddiqui, M. Naeem, N. A. Rahman, and M. Imran, Computing topological indices of certain networks, J. of Optoelectronics and Advanced Materials, 18, No. 9-10, 2016, 884-892.
FORMULA
From Colin Barker, May 13 2018: (Start)
G.f.: 4*x*(8 + 18*x + x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)
MAPLE
seq(54*n^2-26*n+4, n = 1 .. 40);
MATHEMATICA
Table[54n^2-26n+4, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {32, 168, 412}, 40] (* Harvey P. Dale, Mar 21 2020 *)
PROG
(PARI) Vec(4*x*(8 + 18*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 13 2018
CROSSREFS
Cf. A304380.
Sequence in context: A197367 A297843 A172191 * A281467 A302621 A302413
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 13 2018
STATUS
approved