OFFSET
1,1
COMMENTS
a(n) is the second Zagreb index of the octagonal network O(n,n); O(m,n) is defined by Fig. 1 of the Siddiqui et al. reference.
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of O(n,n) is M(O(n,n); x,y) = 4*(n+1)x^2*y^2 + 8(n-1)x^2 *y^3 + (6n^2 - 10n+4)x^3*y^3.
More generally, the M-polynomial of O(m,n) is M(O(m,n); x,y) =2(m+n+2)x^2*y^2+4(m+n-2)x^2 *y^3+(6mn-5m-5n+4)x^3*y^3.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
M. K. Siddiqui, M. Naeem, N. A. Rahman, and M. Imran, Computing topological indices of certain networks, J. of Optoelectronics and Advanced Materials, 18, No. 9-10, 2016, 884-892.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
From Colin Barker, May 13 2018: (Start)
G.f.: 4*x*(8 + 18*x + x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)
MAPLE
seq(54*n^2-26*n+4, n = 1 .. 40);
MATHEMATICA
Table[54n^2-26n+4, {n, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {32, 168, 412}, 40] (* Harvey P. Dale, Mar 21 2020 *)
PROG
(PARI) Vec(4*x*(8 + 18*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 13 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 13 2018
STATUS
approved