login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304374
a(n) = 9*n^2 + 21*n - 6 (n>=1).
2
24, 72, 138, 222, 324, 444, 582, 738, 912, 1104, 1314, 1542, 1788, 2052, 2334, 2634, 2952, 3288, 3642, 4014, 4404, 4812, 5238, 5682, 6144, 6624, 7122, 7638, 8172, 8724, 9294, 9882, 10488, 11112, 11754, 12414, 13092, 13788, 14502, 15234, 15984, 16752, 17538, 18342, 19164, 20004, 20862, 21738, 22632, 23544
OFFSET
1,1
COMMENTS
a(n) is the first Zagreb index of the triangular benzenoid T(n) (see the M. Ghorbani et al. references).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of the triangular benzenoid T(n) is M(T(n); x,y) = 6*x^2*y^2 + 6*(n-1)*x^2*y^3 + 3*n*(n-1)*x^3*y^3/2.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
M. Ghorbani and M. Ghazi, Computing geometric arithmetic index of some graphs, Digest J. of Nanomaterials and Biostructures, 5, No. 4, 2010, 837-841.
M. Ghorbani and M. Ghazi, Computing some topological indices of triangular benzenoid, Digest J. of Nanomaterials and Biostructures, 5, No. 4, 2010, 1107-1111.
FORMULA
From Colin Barker, May 12 2018: (Start)
G.f.: 6*x*(2 - x)*(2 + x) /(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)
MAPLE
seq(9*n^2 + 21*n - 6, n=1..50);
MATHEMATICA
Table[9n^2+21n-6, {n, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {24, 72, 138}, 50] (* Harvey P. Dale, Apr 11 2024 *)
PROG
(PARI) Vec(6*x*(2 - x)*(2 + x) /(1 - x)^3 + O(x^40)) \\ Colin Barker, May 12 2018
(PARI) a(n) = 9*n^2 + 21*n - 6; \\ Altug Alkan, May 12 2018
CROSSREFS
Cf. A304375.
Sequence in context: A143337 A183006 A090860 * A064200 A305065 A192833
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 12 2018
STATUS
approved