OFFSET
0,2
FORMULA
G.f.: 1 - 24 * Sum_{k>0} k * (-x)^k / (1 - (-x)^k) = 1 - 24 * Sum_{k>0} (-x)^k / (1 - (-x)^k)^2.
a(n) = (-1)^n * A006352(n).
a(n) = 24 * A143348(n) unless n=0.
Expansion of -(P(q) - 6 * P(q^2) + 4 * P(q^4)) in powers of q where P() is a Ramanujan Lambert series. - Michael Somos, Apr 07 2015
EXAMPLE
G.f. = 1 + 24*q - 72*q^2 + 96*q^3 - 168*q^4 + 144*q^5 - 288*q^6 + 192*q^7 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], -(-1)^n 24 DivisorSigma[ 1, n]]; (* Michael Somos, Apr 07 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, -(-1)^n * 24 * sigma(n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 09 2008
STATUS
approved