login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304186
G.f. A(x) satisfies: 0 = [x^n] (1+x)^((n+1)*(n+2)/2) / A(x) for n>0.
4
1, 3, 6, 24, 189, 2199, 33495, 625743, 13778469, 348258723, 9916111584, 313642702743, 10901017499472, 412730651160567, 16902257604014685, 744247858158013245, 35058132248539742325, 1758994171367292095805, 93646661943861501833100, 5272500660870261306912750
OFFSET
0,2
FORMULA
[x^n] (1+x)^((n+2)*(n+3)/2) / A(x) = A101483(n+1) = A101479(n+3,2) for n>=0.
[x^n] (1+x)^((n+3)*(n+4)/2) / A(x) = Sum_{k=0..n} A101479(n+4,k+3) * A101479(k+3,2) for n>=0.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 24*x^3 + 189*x^4 + 2199*x^5 + 33495*x^6 + 625743*x^7 + 13778469*x^8 + 348258723*x^9 + 9916111584*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^((n+1)*(n+2)/2) / A(x) begins:
n=0: [1, -2, 0, -12, -105, -1434, -23877, -473730, -10881882, ...];
n=1: [1, 0, -3, -14, -129, -1656, -26850, -522918, -11853219, ...];
n=2: [1, 3, 0, -22, -180, -2088, -32219, -608565, -13504179, ...];
n=3: [1, 7, 18, 0, -255, -2937, -41739, -750711, -16140285, ...];
n=4: [1, 12, 63, 170, 0, -3996, -58877, -991308, -20341875, ...];
n=5: [1, 18, 150, 748, 2220, 0, -78435, -1401570, -27251715, ...];
n=6: [1, 25, 297, 2211, 11271, 37149, 0, -1843458, -38615364, ...];
n=7: [1, 33, 525, 5343, 38745, 207663, 758814, 0, -50361381, ...];
n=8: [1, 42, 858, 11340, 108630, 797100, 4541805, 18301950, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] (1+x)^((n+1)*(n+2)/2) / A(x) for n>0.
RELATED SEQUENCES.
The secondary diagonal in the above table that begins
[1, 3, 18, 170, 2220, 37149, 758814, 18301950, 508907970, ...]
yields A101483, column 2 of triangle A101479.
Related triangular matrix T = A101479 begins:
1;
1, 1;
1, 1, 1;
3, 2, 1, 1;
19, 9, 3, 1, 1;
191, 70, 18, 4, 1, 1;
2646, 795, 170, 30, 5, 1, 1;
46737, 11961, 2220, 335, 45, 6, 1, 1;
1003150, 224504, 37149, 4984, 581, 63, 7, 1, 1; ...
in which row n equals row (n-1) of T^(n-1) followed by '1' for n>0.
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m*(m+1)/2)/Ser(A) )[m] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 08 2018
STATUS
approved