login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101483
Column 2 of triangular matrix T=A101479, in which row n equals row (n-1) of T^(n-1) followed by '1'.
13
1, 1, 3, 18, 170, 2220, 37149, 758814, 18301950, 508907970, 16023271660, 563336380167, 21870097514265, 929083211885920, 42864992943282825, 2134180938818369850, 114045356939250133338, 6510275427522198876426
OFFSET
0,3
LINKS
FORMULA
a(n) ~ (2 + LambertW(-2*exp(-2))) * exp(n+2) * n^(n - 3/2) / (sqrt(Pi) * 2^(n + 1/2)). - Vaclav Kotesovec, Dec 03 2017
EXAMPLE
This sequence can also be generated in the following manner.
Start a table with the all 1's sequence in row 0; from then on, row n+1 can be formed from row n by dropping the initial n+1 terms of row n and taking partial sums of the remaining terms to obtain row n+1.
The table below illustrates this method:
[1], 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
[1, 2], 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...;
[3, 7, 12], 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, ...;
[18, 43, 76, 118], 170, 233, 308, 396, 498, 615, 748, 898, ...;
[170, 403, 711, 1107, 1605], 2220, 2968, 3866, 4932, 6185, ...;
[2220, 5188, 9054, 13986, 20171, 27816], 37149, 48420, ...;
[37149, 85569, 147471, 225363, 322075, 440785, 585046], 758814, ...; ...
In the above table, drop the initial n+1 terms in row n (enclosed in square brackets) and then take partial sums to obtain row n+1 for n>=0;
this sequence then forms the first column of the resultant table.
Note: column k of the above table equals column 2 of matrix power T^(k+1) where T=A101479, for k>=0.
PROG
(PARI) {a(n)=local(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^i)[i-1, j]); )); A=B); return(A[n+1, 1])}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=[1]); for(i=1, n, A=Vec(Ser(A)/(1-x)^(#A)); A=concat(A, A[#A])); A[#A]}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2005
STATUS
approved