login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(0,0) = 1; T(n,k) = -T(n-1,k) + 2 T(n-1,k-1) for k = 0,1,...,n; T(n,k)=0 for n or k < 0.
6

%I #37 Jan 31 2019 19:17:37

%S 1,-1,2,1,-4,4,-1,6,-12,8,1,-8,24,-32,16,-1,10,-40,80,-80,32,1,-12,60,

%T -160,240,-192,64,-1,14,-84,280,-560,672,-448,128,1,-16,112,-448,1120,

%U -1792,1792,-1024,256,-1,18,-144,672,-2016,4032,-5376,4608,-2304,512

%N Triangle read by rows: T(0,0) = 1; T(n,k) = -T(n-1,k) + 2 T(n-1,k-1) for k = 0,1,...,n; T(n,k)=0 for n or k < 0.

%C Row n gives coefficients in expansion of (-1+2x)^n. Row sums=1.

%C In the center-justified triangle, the numbers in skew diagonals pointing top-Left give the triangle in A133156 (coefficients of Chebyshev polynomials of the second kind), and the numbers in skew diagonals pointing top-right give the triangle in A305098. The coefficients in the expansion of 1/(1-x) are given by the sequence generated by the row sums. The generating function of the central terms is 1/sqrt(1+8x), signed version of A059304.

%D Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 389-391.

%H Shara Lalo, <a href="/A303872/a303872.pdf">Skew diagonals in center-justified triangle</a>

%H Paweł Lorek, Piotr Markowski, <a href="https://arxiv.org/abs/1812.00690">Absorption time and absorption probabilities for a family of multidimensional gambler models</a>, arXiv:1812.00690 [math.PR], 2018.

%F Also has the g.f.: 1 / (1 + t - 2t*x).

%e Triangle begins:

%e 1;

%e -1, 2;

%e 1, -4, 4;

%e -1, 6, -12, 8;

%e 1, -8, 24, -32, 16;

%e -1, 10, -40, 80, -80, 32;

%e 1, -12, 60, -160, 240, -192, 64;

%e -1, 14, -84, 280, -560, 672, -448, 128;

%e 1, -16, 112, -448, 1120, -1792, 1792, -1024, 256;

%t T[0, 0] = 1; T[n_, k_] := If[n < 0 || k < 0, 0, - T[n - 1, k] + 2 T[n - 1, k - 1]]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten.

%t For[i = 0, i < 4, i++, Print[CoefficientList[Expand[(-1 +2 x)^i], x]]].

%o (PARI) T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, -T(n-1, k) + 2*T(n-1, k-1)));

%o tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ _Michel Marcus_, May 26 2018

%Y Row sums give A000012.

%Y Signed version of A013609 ((1+2*x)^n).

%Y Cf. A033999 (column 0).

%K tabl,easy,sign

%O 0,3

%A _Shara Lalo_, May 25 2018