login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of [n] that contain no isolated singletons.
4

%I #32 Jun 17 2024 06:58:48

%S 1,0,1,1,2,3,6,11,23,47,103,226,518,1200,2867,6946,17234,43393,111419,

%T 290242,768901,2065172,5630083,15549403,43527487,123343911,353864422,

%U 1026935904,3014535166,8945274505,26829206798,81293234754,248805520401,768882019073,2398686176048,7552071250781

%N Number of partitions of [n] that contain no isolated singletons.

%C a(n) appears to be the same as A211694(n-2). - _Georg Fischer_, Oct 09 2018

%H Alois P. Heinz, <a href="/A303586/b303586.txt">Table of n, a(n) for n = 0..1132</a>

%H A. O. Munagi, <a href="https://doi.org/10.1080/00029890.2018.1430960">Set partitions with isolated singletons</a>, Am. Math. Monthly 125 (2018), 447-452.

%p f:=proc(n) local j;

%p add(combinat:-bell(j-1)*binomial(n-j-1,j-1), j=0..floor(n/2));

%p end;

%p [seq(f(n),n=0..100)];

%t a[n_] := If[n == 0, 1, Sum[BellB[j-1]*Binomial[n-j-1, j-1], {j, 1, Floor[n/2]}]];

%t Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Jun 17 2024, after Maple code *)

%Y Cf. A198648, A198655, A211694, A303587, A303588, A363181.

%K nonn

%O 0,5

%A _N. J. A. Sloane_, May 19 2018

%E a(0)=1 prepended by _Alois P. Heinz_, May 21 2023