login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303586
Number of partitions of [n] that contain no isolated singletons.
4
1, 0, 1, 1, 2, 3, 6, 11, 23, 47, 103, 226, 518, 1200, 2867, 6946, 17234, 43393, 111419, 290242, 768901, 2065172, 5630083, 15549403, 43527487, 123343911, 353864422, 1026935904, 3014535166, 8945274505, 26829206798, 81293234754, 248805520401, 768882019073, 2398686176048, 7552071250781
OFFSET
0,5
COMMENTS
a(n) appears to be the same as A211694(n-2). - Georg Fischer, Oct 09 2018
LINKS
A. O. Munagi, Set partitions with isolated singletons, Am. Math. Monthly 125 (2018), 447-452.
MAPLE
f:=proc(n) local j;
add(combinat:-bell(j-1)*binomial(n-j-1, j-1), j=0..floor(n/2));
end;
[seq(f(n), n=0..100)];
MATHEMATICA
a[n_] := If[n == 0, 1, Sum[BellB[j-1]*Binomial[n-j-1, j-1], {j, 1, Floor[n/2]}]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 17 2024, after Maple code *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 19 2018
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, May 21 2023
STATUS
approved