OFFSET
0,3
FORMULA
Sum_{n>=0}a(n)x^n/g(n) = 1/(2-(Sum_{n>=0}x^n/g(n))) where g(n) = A002884(n).
a(n) ~ c * d^n * 2^(n^2), where d = 1.149524744759658194895953141071829185374022882216951573931... and c = 0.2546517972696293457891304601766804587838159436304512... - Vaclav Kotesovec, May 06 2018
MATHEMATICA
nn = 12; \[Gamma][n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 2; \[CapitalGamma][z_] :=
Sum[z^k/\[Gamma][k], {k, 0, nn}]; Table[\[Gamma][n], {n, 0, nn}] CoefficientList[Series[1/(1 - (\[CapitalGamma][z] - 1)), {z, 0, nn}], z]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Apr 25 2018
STATUS
approved