OFFSET
2,4
COMMENTS
Equivalently, the number of cycles in the complete graph with odd length greater than three. - Andrew Howroyd, Apr 28 2018
LINKS
Eric Weisstein's World of Mathematics, Chordless Cycle
Eric Weisstein's World of Mathematics, Johnson Graph
Eric Weisstein's World of Mathematics, Triangular Graph
FORMULA
a(n) = Sum_{k=2, ceiling(n/2)-1} binomial(n, 2*k+1)*(2*k)!/2. - Andrew Howroyd, Apr 28 2018
a(n) ~ sqrt(Pi) * (exp(2) - (-1)^n) * n^(n - 1/2) / (2^(3/2) * exp(n+1)). - Vaclav Kotesovec, Apr 27 2024
MATHEMATICA
Array[Sum[Binomial[#, 2 k + 1] (2 k)!/2, {k, 2, Ceiling[#/2] - 1}] &, 23, 2] (* Michael De Vlieger, Apr 28 2018 *)
Table[Sum[Binomial[n, 2 k + 1] (2 k)!/2, {k, 2, Ceiling[n/2] - 1}], {n, 2, 20}] (* Eric W. Weisstein, Apr 29 2018 *)
Join[{0, 0, 0}, Table[12 Binomial[n, 5] HypergeometricPFQ[{1, 5/2, (5 - n)/2, 3 - n/2}, {7/2}, 4], {n, 5, 20}]] (* Eric W. Weisstein, Apr 29 2018 *)
PROG
(PARI) a(n)=sum(k=2, n\2, binomial(n, 2*k+1)*(2*k)!/2) \\ Andrew Howroyd, Apr 28 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 25 2018
EXTENSIONS
a(9)-a(24) from Andrew Howroyd, Apr 28 2018
STATUS
approved