Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Mar 19 2022 06:36:32
%S 1,1,1,3,8,15,53,84,326,495,1997,3003,12370,18564,77513,116280,490306,
%T 735471,3124541,4686825,20030000,30045015,129024469,193536720,
%U 834451788,1251677700,5414950283,8122425444,35240152706,52860229080,229911617041,344867425584
%N Number of ordered rooted trees with n non-root nodes such that the maximal outdegree equals ceiling(n/2).
%H Alois P. Heinz, <a href="/A303259/b303259.txt">Table of n, a(n) for n = 0..2417</a>
%F a(n) = A203717(n,ceiling(n/2)).
%p b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
%p add(b(u-j, o+j-1, k), j=1..min(1, u))+
%p add(b(u+j-1, o-j, k), j=1..min(k, o)))
%p end:
%p a:= n-> `if`(n=0, 1, (j-> b(0, n, j)-b(0, n, j-1))(ceil(n/2))):
%p seq(a(n), n=0..35);
%t b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1,
%t Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] +
%t Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
%t a[n_] := If[n == 0, 1, With[{j = Ceiling[n/2]}, b[0, n, j]-b[0, n, j-1]]];
%t Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Mar 19 2022, after _Alois P. Heinz_ *)
%Y Bisections give: A291662 (even part), A005809 (odd part).
%Y Cf. A203717.
%K nonn
%O 0,4
%A _Alois P. Heinz_, Apr 20 2018